23CE12T1 ENGINEERING MECHANICS

(Common to Civil, Mechanical Engineering & Allied branches)

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture – Tutorial –Practical	3-0-0
Prerequisite	-	Sessional Evaluation	30
		Semester End Exam. Evaluation	70
		Total Marks	100

Course	To get familiarized with different types of force systems.											
Objectives	To draw accurate free body diagrams representing forces and moments acting											
	on a body to analyze the equilibrium of system of forces.											
	To teach the basic principles of center of gravity, centroid and moment of											
	inertia and determine them for different simple and composite bodies.											
	To apply the Work-Energy method to particle motion.											
	To understand the kinematics and kinetics of translational and rotational motion											
	of rigid bodies.											
Course	CO1 Understand the fundamental concepts in mechanics and determine the											
Outcomes	frictional forces for bodies in contact.											
	CO2 Analyze different force systems such as concurrent, coplanar and											
	spatial systems and calculate their resultant forces and moments.											
	CO3 Calculate the centroids, center of gravity and moment of inertia of											
	different geometrical shapes.											
	CO4 Apply the principles of work-energy and impulse-momentum to solve											
	the problems of rectilinear and curvilinear motion of a particle.											
	CO5 Solve the problems involving the translational and rotational motion of											
	rigid bodies.											
	UNIT I											
C												
Course Content	Introduction to Engineering Mechanics – Basic Concepts. Scope and Applications											
	Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems.											
	Friction: Introduction, limiting friction and impending motion, Coulomb's laws of dry friction, coefficient of friction, Cone of Static friction.											

UNIT II

Equilibrium of Systems of Forces: Free Body Diagrams, Lami's Theorem, Equations of Equilibrium of Coplanar Systems, Graphical method for the equilibrium, Triangle law of forces, converse of the law of polygon of forces condition of equilibrium, Equations of Equilibrium for Spatial System of forces, Numerical examples on spatial system of forces using vector approach, Analysis of plane trusses.

Principle of virtual work with simple examples

UNIT III

Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures

Centre of Gravity: Centre of gravity of simple body (from basic principles), Centre of gravity of composite bodies, Pappus theorems.

Area Moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia.

Mass Moment of Inertia: Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, Mass Moment of Inertia of composite bodies.

UNIT IV

Rectilinear and Curvilinear motion of a particle: Kinematics and Kinetics –D'Alembert's Principle - Work Energy method and applications to particle motion- Impulse Momentum method.

UNIT V

Rigid body Motion: Kinematics and Kinetics of translation, Rotation about fixed axis and plane motion, Work Energy method and Impulse Momentum method.

TEXTBOOKS:

Textbooks	1. S. Timoshenko, D. H. Young, J.V. Rao, S. Pati., Engineering Mechanics,
and	McGraw Hill Education, 5 th edition.
Reference	2. Hibbeler R.C., Engineering Mechanics: Statics and Dynamics, Pearson
books	

Education, Inc., New Delhi, 14th edition, 2022.

REFERENCE BOOKS:

1. Rogers and M A. Nelson., Engineering Mechanics, Statics and Dynamics,

McGraw Hill Education 1 st edition, 2009.
2. I.H. Shames, Engineering Mechanics, Statics and Dynamics, 4th edition,
РНІ, 2002.
3. Dynamics, J. L. Meriam and L.G. Kraige., Engineering Mechanics,
Volume-I: Statics, Volume-II: John Wiley, 6th edition, 2008.
4. R.C. Hibbler., Engineering Mechanics: Principles of Statics and
Dynamics, Pearson Press, 2006.
5. Andy Ruina and Rudra Pratap., Introduction to Statics and
Dynamics, Oxford University Press, 2011.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, --Not Mapping

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	-	-	1	2	1	1	-	-	-	1	1	1	-
CO2	3	3	2	1	1	1	1	-	-	-	1	1	1	2	-
CO3	3	2	2	-	1	-	1	-	-	-	-	1	2	2	1
CO4	3	3	2	2	2	-	1	-	-	-	-	2	2	2	1
CO5	3	2	2	2	2	-	1	-	-	-	1	2	2	3	1